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ABSTRACT

The strong directing ability of the N,N,N′,N′-tetramethyldiaminophosphorodiamidate group has been used to achieve selective metalations on
various heterocycles such as pyridines, quinolines and quinoxalines with TMP-derived bases like TMPMgCl·LiCl, TMP2Mg·2LiCl, and
TMP2Zn·2MgCl2·2LiCl. This protocol was applied in the synthesis of etoricoxib, talnetant and a P-selectin inhibitor.

Heteroaromatics are important scaffolds in medicinal chem-
istry.1 The skeletons of quinolines, pyridines, and quinoxa-
lines are often found in pharmaceuticals such as the
quinoline-based NK3 receptor antagonist talnetant2 (1; GSK),
the pyridine-based COX-2 inhibitor etoricoxib3 (2; Arcoxia,
Merck), or the quinoxaline-based tachykinin receptor an-
tagonist4 (3; Mitsubishi Tanabe Pharma; Figure 1). Lithia-
tions and magnesiations of these scaffolds using either a

halogen/metal exchange5 or directed metalation6 have been
reported. Lithiations often suffer from a lack of selectivity
even when carried out at low temperatures.5b,6e Recently,
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Figure 1. Pharmaceuticals containing a quinoline, pyridine, or
quinoxaline skeleton.
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we have reported that the use of TMP (2,2,6,6-tetrameth-
ylpiperidyl)-derived bases allows the efficient magnesiation7

or zincation8 of functionalized aromatics and heteroaromatics.
We have also reported that the use of a N,N,N′,N′-tetram-
ethylphosphorodiamidate group as DMG (directed-metala-
tion group)9 allows fast and selective magnesiations of
aromatics with unusual regioselectivity.10 Herein, we report
metalations of pyridines, quinolines, and quinoxalines per-
formed with TMPMgCl·LiCl (4a), TMP2Mg·2LiCl (4b), and
TMP2Zn·2MgCl2·2LiCl (4c) using the P(O)(NMe2)2 group
as DMG. Thus, the phosphorodiamidate 5a (derived from
2-pyridinol) reacted with TMPMgCl·LiCl at 0 °C within 1 h
and gave exclusively the 3-magnesiated heterocycle which
reacted after transmetalation with ZnCl2 via Negishi cross-
coupling reaction with 1-bromo-4-(methylthio)benzene in the
presence of Pd2(dba)3 (1 mol %) and RuPHOS (2 mol %),11

giving the biaryl 6a in 74% yield (Table 1, entry 1). The

phosphorodiamidate 5b prepared from 3-hydroxypyridine
was best metalated at 25 °C using TMP2Zn·2MgCl2·2LiCl
(4c). Deprotonations with TMPMgCl·LiCl (4a) or TMP2Mg·
2LiCl (4b) resulted in lower yields, even when the metala-
tions were carried out at low temperatures (-20 to -50 °C).
Thus, the pyridine 5b was zincated selectively in position 4
at 25 °C within 1 h. The resulting zinc reagent was quenched
via Negishi reaction using either 4-iodophenyl triflate or

4-chloroiodobenzene with a Pd catalyst (Pd(dba)2 (5 mol %),
P(2-furyl)3 (10 mol %)),14 yielding the arylated pyridines
6b and 6c in 79-88% yield (entries 2 and 3). An allylation
of the zinc reagent was achieved with 3-bromo-2-methyl-
propene in the presence of CuCN·2LiCl12 (10 mol %)
furnishing the allylated pyridine 6d in 74% yield (entry 4).
Moreover, functionalization in position 3 was achieved after
metalation of the phosphorodiamidate 5c using TMPMgCl·LiCl
(4a) (0 °C, 1 h). After addition of 1,1,2-trichlorotrifluoro-
ethane, the desired 3-chloropyridine 6e was isolated in 83%
yield (entry 5). The addition of S-methyl methanesulfono-
thioate gave the thioether 6f in 88% yield (entry 6).
Furthermore, the phosphorodiamidate 7a derived from 2-hy-
droxyquinoline was magnesiated regioselectively at position
3 and then thioethylated with EtSSO2Ph13 yielding the
thioether 8a in 85% yield (Table 2, entry 1). Remarkably,

Table 1. Pyridines of Type 6 Obtained after Metalation with
TMPMgCl·LiCl (4a) or TMP2Zn·2MgCl2·2LiCl (4c) and
Subsequent Quenching with an Electrophile

a Yield of isolated, analytically pure product. b TMPMgCl·LiCl (1.5
equiv) was used (0 °C, 1 h). c TMP2Zn·2MgCl·2LiCl (0.75 equiv) was used
(25 °C, 1 h). d Obtained by Pd-catalyzed cross-coupling reaction after
transmetalation with ZnCl2 (1.6 equiv) using Pd2(dba)3 (1 mol %) and
RuPHOS (2 mol %) as catalyst. e Obtained by Pd-catalyzed cross-coupling
reaction using Pd(dba)2 (5 mol %) and P(2-furyl)3 (10 mol %) as catalyst.
f A transmetalation with CuCN·2LiCl (10 mol %) was performed.

Table 2. Quinolines and Quinoxalines of Type 8 Obtained after
Metalation with TMPMgCl·LiCl (4a) or TMP2Mg·2LiCl (4b)
and Subsequent Quenching with an Electrophile

a Yield of isolated, analytically pure product. b TMPMgCl·LiCl (1.5
equiv) was used (0 °C, 1 h). c TMP2Mg·2LiCl (1.5 equiv) was used (-30
°C, 1.5 h). d A transmetalation with CuCN·2LiCl (10 mol %) was performed
after transmetalation with ZnCl2 (1.6 equiv). e Obtained by Pd-catalyzed
cross-coupling reaction after transmetalation with ZnCl2 (1.6 equiv) using
Pd(dba)2 (5 mol %) and P(2-furyl)3 (10 mol %) as catalyst.
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magnesiations at the 3 position of the quinoline proceed
without protection of the kinetically more favored C2
position. Thus, the quinoline 7b smoothly reacted with
TMPMgCl·LiCl (4a) at 0 °C within 1 h. The corresponding
magnesium reagent was then transmetalated with ZnCl2 and
subsequently acylated with pivaloyl chloride in the presence
of CuCN·2LiCl12 (10 mol %) giving the heteroaromatic
ketone 8b in 62% yield (entry 2). A cross-coupling reaction
of the Zn-reagent derived from 7b with ethyl 4-iodobenzoate
in the presence of a Pd-catalyst (Pd(dba)2 (5 mol %), P(2-
furyl)3 (10 mol %)14) furnished the 3-arylated quinoline 8c
in 83% yield (entry 3). Moreover, the regioselective func-
tionalization of the C7 position was possible using this
protocol. Thus, the 2-chloroquinoline 7c is readily magne-
siated with TMPMgCl·LiCl (4a) at 0 °C within 1 h. A
transmetalation with ZnCl2 followed by the addition of
methallyl bromide in the presence of CuCN·2LiCl12 (10 mol
%) led to the allylated quinoline 8d in 87% yield (entry 4).
The addition of 4-chlorobenzoyl chloride under the same
conditions furnished the ketone 8e in 74% yield (entry 5).
The 2-bromoquinoline 7d also underwent a smooth magne-
siation at 0 °C with TMPMgCl·LiCl (4a). After transmeta-
lation with ZnCl2, a cross-coupling reaction with (4-
iodophenoxy)(triisopropyl)silane in the presence of Pd(dba)2

(5 mol %) and P(2-furyl)3 (10 mol %)14 led to the arylated
bromoquinoline 8f in 81% yield (entry 6). The introduction
of an ethyl ester in position 7 was achieved by reacting the
7-magnesiated quinoline 7d with NC-CO2Et leading to the
ester 8g in 77% yield (entry 7). Magnesiations or lithiations
on quinoxalines are often difficult to achieve as these

systems are prone to undergo nucleophilic substitution
reactions.8a,15 However, quinoxaline 7e bearing a phospho-
rodiamidate group as DMG was smoothly magnesiated with
TMP2Mg·2LiCl (4b) at -50 °C in 1.5 h without any
dimerization side reaction. After a transmetalation with ZnCl2

it underwent a Negishi cross-coupling in the presence of a
Pd(dba)2 (5 mol %) and P(2-furyl)3 (10 mol %)14 with either
4-chloroiodobenzene or ethyl 4-iodobenzoate leading to the
2-arylated quinoxalines 8h and 8i in up to 79% yield (entries
8 and 9). Treatment of the quinoxalylzinc reagent with
methallyl bromide in the presence of CuCN·2LiCl12 (10
mol %) furnished the allylated quinoxaline 8j in 71% yield
(entry 10).

As an application, we have prepared etoricoxib (2),
talnetant (1), and a P-selectin inhibitor16 (14) (Schemes 1
and 2). For the preparation of etoricoxib (2), a phospho-
rodiamidate DMG group was first attached at 2-pyridinol
leading to 5a in 90% yield.10 In a second step, 5a was
selectively metalated in the 3-position using TMPMgCl·LiCl
(4a; 1.5 equiv, 0 °C, 1 h).17 After Zn-transmetalation, a
subsequent cross-coupling reaction with 4-bromophenyl
methyl sulfone in the presence of Pd2(dba)3 (1 mol %) and
RuPHOS11 (2 mol %) gave the arylated pyridine 6g in 88%
yield. Cleavage of the directing group with an HCl/dioxane
mixture18 (25 °C, 24 h) led to the pyridone 9 in 95% yield.

Chlorination at the C5 position was achieved by reacting
9 with KClO3 in the presence of concd HCl19 furnishing
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Scheme 1. Synthesis of Etoricoxib
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quantitatively the 5-chloropyridine 10. The final product was
obtained using a literature procedure.3b Thus, the reaction
of this pyridone with POCl3 gave the corresponding 2,5-
dichloropyridine which by Stille11 reaction with the tin
reagent 11 derived from 5-bromo-2-picoline furnished etori-
coxib (2; Scheme 1). Similarly, we have prepared two
pharmaceuticals bearing a quinoline salicylic acid spine.

Thus, 3-hydroxyquinoline was first converted into the
corresponding phosphorodiamidate 7f.10 The metalation with
TMP2Mg·2LiCl (4b) occurred selectively at the C2 position
(-50 °C, 1 h). Transmetalation with ZnCl2, followed by a
cross-coupling reaction with either iodobenzene or 4-chlor-
oiodobenzene in the presence of Pd(dba)2 (5 mol %) and
P(2-furyl)3 (10 mol %),14 furnished the quinolines 8k,l in
up to 81% yield. A subsequent metalation at the C4 position
with TMPMgCl·LiCl (4a, 25 °C, 1 h) and a reaction with
NC-CO2Et gave the desired esters 12a,b in 79-81% yield.
Cleavage of the DMG and the ester is achieved by refluxing
12a in a HCl/dioxane mixture16 for 36 h. The reaction of
the resulting acid with (S)-phenylpropylamine and CDI20

furnished talnetant (1) in 86% yield (Scheme 2). Completing
the synthesis of the P-selectin inhibitor 14 required a
phenylation of the C8 position. Thus, the treatment of 12b
with TMP2Mg·2LiCl (4b, -40 °C, 20 h)7d followed by a
transmetalation (ZnCl2) and a subsequent cross-coupling
reaction with iodobenzene (Pd(dba)2 (5 mol %), P(2-furyl)3

(10 mol %)) yielded the highly functionalized quinoline
13 in 76% yield. Combined deprotection/saponification
is achieved by refluxing 13 (2 M HCl; dioxane, 110 °C,
36 h) leading to the P-selectin inhibitor (14) quantitatively
(Scheme 2).

In summary, we have shown that phosphorodiamidate-
substituted N-heterocycles can be smoothly and regioselec-
tively magnesiated or zincated with TMPMgCl·LiCl (4a),
TMP2Mg·2LiCl (4b), or TMP2Zn·2MgCl2·2LiCl (4c) and
readily functionalized in positions difficult to substitute
otherwise. This method was used to prepare three pharma-
ceutically relevant structures. Further studies on phosphate
DMGs are currently underway in our laboratories.
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